Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Frontiers in Nanotechnology ; 4, 2022.
Article in English | Web of Science | ID: covidwho-20241913

ABSTRACT

COVID-19 is one of the serious catastrophes that have a substantial influence on human health and the environment. Diverse preventive actions were implemented globally to limit its spread and transmission. Personnel protective equipment (PPE) was an important part of these control approaches. But unfortunately, these types of PPE mainly comprise plastics, which sparked challenges in the management of plastic waste. Disposable face masks (DFM) are one of the efficient strategies used across the world to ward off disease transmission. DFMs can contribute to micro and nano plastic pollution as the plastic present in the mask may degrade when exposed to certain environmental conditions. Microplastics (MPs) can enter the food chain and devastate human health. Recognizing the possible environmental risks associated with the inappropriate disposal of masks, it is crucial to avert it from becoming the next plastic crisis. To address this environmental threat, titanium dioxide (TiO2)-based photocatalytic degradation (PCD) of MPs is one of the promising approaches. TiO2-based photocatalysts exhibit excellent plastic degradation potential due to their outstanding photocatalytic ability, cost efficiency, chemical, and thermal stability. In this review, we have discussed the reports on COVID-19 waste generation, the limitation of current waste management techniques, and the environmental impact of MPs leachates from DFMs. Mainly, the prominence of TiO2 in the PCD and the applications of TiO2-based photocatalysts in MPs degradation are the prime highlights of this review. Additionally, various synthesis methods to enhance the photocatalytic performance of TiO2 and the mechanism of PCD are also discussed. Furthermore, current challenges and the future research perspective on the improvement of this approach have been proposed.

2.
Indonesian Journal of Electrical Engineering and Computer Science ; 31(1):108-114, 2023.
Article in English | Scopus | ID: covidwho-20235353

ABSTRACT

Every country in the globe has been profoundly affected by the coronavirus epidemic, and these countries are struggling with how to clean the affected areas quickly and effectively. This project aims to contribute to the fight against the spread of the coronavirus by quickly, safely, and effectively cleaning medical clinics. Regular cleaning and disinfection might reassure people and increase their confidence in the lessened risk of the spread of communicable diseases. Robots that use ultraviolet C (UVC) sanitizers can quickly and effectively clean the clinic rooms. In addition to cleaning patient seating areas, clinical equipment, restrooms, and above controls. The use of UVC technology effectively eliminates airborne germs in medical clinics. The results of UVC disinfection performance indicated a 92% reduction in the total bacterial count (TBC) at 0.5 metres from the robot after 8 minutes of UVC irradiation. © 2023 Institute of Advanced Engineering and Science. All rights reserved.

3.
Avances en Odontoestomatologia ; 39(1):42-48, 2023.
Article in Spanish | EMBASE | ID: covidwho-20234681

ABSTRACT

The oral cavity houses a large number of microorganisms that are potential pathogens, such as cytome-galovirus, hepatitis B virus (HBV), hepatitis C virus, herpes simplex virus types 1 and 2, human immuno-deficiency virus, mycobacterium tuberculosis and currently with the appearance of the SARS COV-2 that causes covid-19, the dental community must take stricter measures in its protection protocols against diseases. To evaluate its germicidal efficacy, ultraviolet light was applied with different exposure times on the alginate dental impressions, immediately after having taken the impression, which when it came into contact with the oral cavity of the patient is contaminated. As a result, a decrease in size and quantity of the bacterial colonies was observed in most of the samples in which the UV LED light was applied at 10 and 15 minutes of exposure. Some samples showed less bacterial growth even after 5 minutes of exposure. All this confirms its germicidal capacity thanks to its 245 nm ultraviolet spectrum that affects the DNA and RNA chain of microorganisms since it is the wavelength of maximum absorption of its molecule, eliminating its reproductive and survival capacity. The advantages it offers such as its small size, easy to handle and install, that it does not require constant maintenance, low acquisition cost;its constant high intensity light that does not generate any increase in temperature, makes it an excellent disinfectant auxiliary that can be incorporated into dental clinics.Copyright © 2023, Ediciones Avances S.L.. All rights reserved.

4.
Viruses ; 15(5)2023 05 16.
Article in English | MEDLINE | ID: covidwho-20235667

ABSTRACT

The host targeting antiviral, UV-4B, and the RNA polymerase inhibitor, molnupiravir, are two orally available, broad-spectrum antivirals that have demonstrated potent activity against SARS-CoV-2 as monotherapy. In this work, we evaluated the effectiveness of UV-4B and EIDD-1931 (molnupiravir's main circulating metabolite) combination regimens against the SARS-CoV-2 beta, delta, and omicron BA.2 variants in a human lung cell line. Infected ACE2 transfected A549 (ACE2-A549) cells were treated with UV-4B and EIDD-1931 both as monotherapy and in combination. Viral supernatant was sampled on day three when viral titers peaked in the no-treatment control arm, and levels of infectious virus were measured by plaque assay. The drug-drug effect interaction between UV-4B and EIDD-1931 was also defined using the Greco Universal Response Surface Approach (URSA) model. Antiviral evaluations demonstrated that treatment with UV-4B plus EIDD-1931 enhanced antiviral activity against all three variants relative to monotherapy. These results were in accordance with those obtained from the Greco model, as these identified the interaction between UV-4B and EIDD-1931 as additive against the beta and omicron variants and synergistic against the delta variant. Our findings highlight the anti-SARS-CoV-2 potential of UV-4B and EIDD-1931 combination regimens, and present combination therapy as a promising therapeutic strategy against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology
5.
J Biomol Struct Dyn ; : 1-10, 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-20236304

ABSTRACT

The treatment of coronavirus COVID-19, like other viral diseases, is currently underdeveloped. This fact necessitates the search for new drugs and treatment methods that will effectively disrupt the life cycle of the virus. A big problem in the therapy of viral diseases is the ability of viruses to evade the host's immune response. We suppose that the search for drugs that can change the evasiveness of the virus from the immune response of the host is a very promising strategy, as it can help the body to cope with the infection. Protein SARS-CoV-2 ORF8 is one of the key proteins that can suppress antiviral immunity. This paper considers the available information on the structure and functioning of ORF8, as well as the results of molecular docking of ORF8 to a wide range of tetrapyrrole macroheterocyclic compounds capable of generating reactive oxygen species upon photoirradiation. This principle of photoinactivation of biosubstrates underlies the methods of photodynamic therapy of cancer. Application of photoinactivation of drug-resistant forms of bacteria and some viruses can be useful in the fight against COVID-19 and other viral infections. In this work, the structure of ORF8 complexes with macrocyclic compounds is considered in detail, the dependence of their binding affinity on the nature of macrocycles and the nature of peripheral substituents is analyzed and spectral studies of the binding of ORF8 to chlorin is performed. This paper is a part of a large project to investigate the possibility of using macrocyclic compounds for the treatment of viral diseases.Communicated by Ramaswamy H. Sarma.

6.
J Colloid Interface Sci ; 649: 49-57, 2023 Jun 11.
Article in English | MEDLINE | ID: covidwho-20235033

ABSTRACT

Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.

8.
Environ Int ; 177: 108022, 2023 07.
Article in English | MEDLINE | ID: covidwho-20231002

ABSTRACT

A non-filter virus inactivation unit was developed that can control the irradiation dose of aerosolized viruses by controlling the lighting pattern of a 280 nm deep-UV (DUV)-LED and the air flowrate. In this study, the inactivation properties of aerosolized SARS-CoV-2 were quantitatively evaluated by controlling the irradiation dose to the virus inside the inactivation unit. The RNA concentration of SARS-CoV-2 remained constant when the total irradiation dose of DUV irradiation to the virus exceeded 16.5 mJ/cm2. This observation suggests that RNA damage may occur in regions below the detection threshold of RT-qPCR assay. However, when the total irradiation dose was less than 16.5 mJ/cm2, the RNA concentration monotonically increased with a decreasing LED irradiation dose. However, the nucleocapsid protein concentration of SARS-CoV-2 was not predominantly dependent on the LED irradiation dose. The plaque assay showed that 99.16% of the virus was inactivated at 8.1 mJ/cm2 of irradiation, and no virus was detected at 12.2 mJ/cm2 of irradiation, resulting in a 99.89% virus inactivation rate. Thus, an irradiation dose of 23% of the maximal irradiation capacity of the virus inactivation unit can activate more than 99% of SARS-CoV-2. These findings are expected to enhance versatility in various applications. The downsizing achieved in our study renders the technology apt for installation in narrow spaces, while the enhanced flowrates establish its viability for implementation in larger facilities.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2 , Disinfection/methods , Ultraviolet Rays , RNA
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122911, 2023 Nov 05.
Article in English | MEDLINE | ID: covidwho-2327829

ABSTRACT

Millions of individuals have lost their lives and changed their routines as a direct consequence of exposure to the coronavirus (Covid-19). Molnupiravir (MOL) is an orally bioavailable tiny molecule antiviral prodrug that is effective for curing the coronavirus that produces serious acute respiratory disorder (SARS-CoV-2). Fully green-assessed stability-indicating simple spectrophotometric methods have been developed and fully validated as per ICH criteria. The potential impact of degradation products of drug components on the safety and efficacy of a medication's shelf life is likely to be negligible. The field of pharmaceutical analysis necessitates various stability testing under different conditions. The conduct of such inquiries affords the prospect of predicting the most probable routes of degradation and ascertaining the inherent stability characteristics of the active drugs. Consequently, a surge in demand arose for the creation of an analytical methodology that could consistently measure the degradation products and/or impurities that may be present in pharmaceuticals. Herein, five smart and simple spectrophotometric data manipulation techniques have been produced for the concurrent estimation of MOL and its active metabolite as its possible acid degradation product namely; N-hydroxycytidine (NHC). Structure confirmation of NHC build-up through IR, MS and NMR analyses. All current techniques verified linearity ranging from 10 to 150 µg/ml and 10-60 µg/ml for MOL and NHC, respectively. The limit of quantitation (LOQ) values were in the range of 4.21-9.59 µg/ml, while the limit of detection (LOD) values were ranging from 1.38 - 3.16 µg/ml. The current methods were evaluated in terms of greenness by four assessing methods and confirmed to be green. The significant novelty of these methods depends on their being the first environmentally soundness stability-indicating spectrophotometric approaches for the concurrent estimation of MOL and its active metabolite, NHC. Also, the preparation of purified NHC delivers significant cost savings, instead of purchasing an expensive ingredient. These smart methods were utilized for analyzing the pharmaceutical dosage form which may be of great benefit to the pharmaceutical market.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Spectrophotometry/methods , Pharmaceutical Preparations
10.
Main Group Chemistry ; 22(1):115-128, 2023.
Article in English | Web of Science | ID: covidwho-2326199

ABSTRACT

In the present work, at first, DFT calculations were carried out to study the molecular structure of the tenofovir at B3LYP/MidiX level of theory and in the water as solvent. The HOMO/LUMO molecular orbitals, excitation energies and oscillator strengths of investigated drug were also calculated and presented. NBO analysis was performed to illustrate the intramolecular rehybridization and electron density delocalization. In the following, a molecular docking study was performed for screening of effective available tenofovir drug which may act as an efficient inhibitor for the SARS-CoV-2 M-pro. The binding energy value showed a good binding affinity between the tenofovir and SARS-CoV-2 Mpro with binding energy of-47.206 kcal/mol. Therefore, tenofovir can be used for possible application against the SARS-CoV-2 M-pro.

11.
Air Qual Atmos Health ; : 1-17, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2325447

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a result of the infection by "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and has caused various social and economic effects over the globe. As the SARS-CoV-2 is effectively inactivated by the exposure to the UV-B radiation (shorter than 315 nm), the exposure time for inactivation of the SARS-CoV-2 was estimated using the broadband UV observation instrument over 11 observation sites in South Korea. For the limitation of the UV biometer, which has limited spectral information, the coefficient for conversion from the erythemal UV (EUV) to the radiation for virus inactivation was adopted before estimating the inactivation time. The inactivation time of SARS-CoV-2 is significantly dependent on seasonal and diurnal variations due to the temporal variations of surface incident UV irradiance. The inactivation times in summer and winter were around 10 and 50 min, respectively. The inactivation time was unidentified during winter afternoons due to the weak spectral UV solar radiation in winter. As the estimation of inactivation time using broadband observation includes the uncertainty due to the conversion coefficient and the error due to the solar irradiance, the sensitivity analysis of the inactivation time estimation was also conducted by changing the UV irradiance.

12.
Opt Mater (Amst) ; 140: 113866, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2315983

ABSTRACT

Disinfection with far UV-C radiation (<230 nm) is an effective method to inactivate harmful microorganisms like the SARS-CoV2 virus. Due to the stronger absorption than regular UV-C radiation (254 nm) and hence limited penetration into human tissues, it has the promise of enabling disinfection in occupied spaces. The best far-UV sources so far are discharge lamps based on the KrCl* excimer discharge peaking at 222 nm, however they produce longer wavelength radiation as a by-product. In current KrCl* excimer lamps usually a dichroic filter is used to suppress these undesired longer wavelengths. A phosphor-based filter is an alternative which is cheaper and easier to apply. This paper describes the results of our exploration of this opportunity. Various compounds were synthesized and characterized to find a replacement for the dichroic filter. It was found that Bi3+-doped ortho-borates with the pseudo-vaterite crystal structure exhibit the best absorption spectrum i.e. high transmission around 222 nm and strong absorption in the 235-280 nm range. Y0.24Lu0.75Bi0.01BO3 showed the best absorption spectrum in the UV-C. To suppress the unwanted Bi3+ emission (UV-B), the excitation energy can be transferred to a co-dopant. Ho3+ turned out to be the best co-dopant, and Ho0.24Lu0.75Bi0.01BO3 appeared to be the best overall candidate for the phosphor filter material. A suitable formulation for a coating suspension containing this material was found, and quite homogeneous coatings were achieved. The efficiency of these filter layers was investigated and the results in terms of exposure limit increase i.e. gain factor vs. no filter were compared with the dichroic filter. We achieved a gain factor for the Ho3+ containing sample of up to 2.33, i.e. not as good as that of the dichroic filter (∼4.6), but a very relevant improvement, making Ho0.24Lu0.75Bi0.01BO3 an interesting material for a cost-effective filter for KrCl* far UV-C lamps.

13.
Food Environ Virol ; 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2315543

ABSTRACT

Monitoring the circulation of enteric viruses in environmental wastewater is a valuable tool for preventing the emergence of waterborne and food-borne diseases in humans. The detection of viruses was performed in five Tunisian wastewater treatment plants, three located in the Grand Tunis City (WWTP 1, WWTP 2, WWTP 3) and two in the Sahel of Tunisia (WWTP 4, WWTP 4), known as very developed and crowded zones, to assess the effectiveness of three biological wastewater treatment procedures namely natural oxidizing lagoons, rotating biodisks procedure, activated sludge procedure, and one tertiary sewage treatment using UV-C254 reactor for this enteric viruses' removal. Thus, 242 sewage samples were collected between June 2019 and May 2020 from different lines of wastewater treatment procedures implemented in the five wastewater treatment plants investigated. SARS-CoV-2 was analyzed using real-time multiplex reverse-transcription polymerase chain reaction (multiplex real-time RT-PCR) and enteroviruses using reverse-transcription polymerase chain reaction (RT-PCR). The enteroviruses detection showed 93% and 73% respective high frequencies only in the two WWTPs of the Grand Tunis (WWTP 1 and WWTP 2). SARS-CoV-2 was detected in 58% of the all wastewater samples collected from the five studied WWTPs with a respective dominance of N gene (47%), S gene (42%), RdRp gene (42%) and at last E gene (20%). These enteroviruses and SARS-CoV-2 detection were revealed in all steps of the wastewater treatment procedures, so poor virological quality is found at the exit of each biological and tertiary step of treatment investigated. For the first time in Tunisia, these results highlighted the enterovirus and SARS-CoV-2 detection with high rates, and the ineffectiveness of the biological and UV-C254 treatment implemented to remove these viruses. The preliminary results of SARS-CoV-2 circulation in Tunisian wastewater confirmed the wide positivity rate underlined by other works worldwide and allowed showing a move towards integrating wastewater as a way for this virus to spread in different areas and environments. So, this last result about SARS-CoV-2 circulation allowed us to caution about the strong probability of diffusion of this hazardous virus through water and sewage; despite its enveloped character and nature, as a labile and sensitive virus in these environments. Thus, establishing a national surveillance strategy is needed to improve the sanitary quality of treated wastewater and prevent public health problems related to these viruses in treated wastewater.

14.
Pathogens ; 11(1)2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-2315199

ABSTRACT

The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.

15.
International Journal of Pharmaceutical Investigation ; 13(2):290-305, 2023.
Article in English | Web of Science | ID: covidwho-2307827

ABSTRACT

Favipiravir is an antiviral drug with significant and widespread antiviral action. Favipiravir was crucial in the contest against the COVID-19 pandemic because of how well it treated the SARS-CoV-2 virus. It is well known that contemporary pharmaceutical analysis establishes green, stability-indicating analytical procedures. The current study aimed to develop and assess UV-spectrophotometric (zero order, first order, area under the curve) and RP-HPLC methods for estimating favipiravir in its pharmaceutical dose form, comparing them using ANOVA and an in-vitro dissolution analysis. A green solvents composition of methanol, ethanol, and water (25:35:40 v/v/v) is used for analysis as a mobile phase and diluent. Method A is a simple zero-order spectrophotometric method for determining favipiravir at 236 nm, and the correlation coefficient in the linearity study was found to be 0.9962, LOD, and LOQ are 0.18 and 0.55 mg/mL. Method B is a first-order spectrophotometric method for determining favipiravir at 227 nm, and the correlation coefficient in the linearity study was found to be 0.9964, LOD, and LOQ are 0.64 and 1.96 mg/mL. Method C is an area under the curve spectrophotometric method for determining favipiravir at 230 to 243 nm, and the correlation coefficient in the linearity study was found to be 0.9986, LOD, and LOQ are 0.32 and 0.96 mg/mL. Method D is the RP-HPLC method for the determination of favipiravir at the retention time of 7.216 min, a flow rate of 0.80 mL/min, column temperature of 25 degrees C, at 236 nm, Isocratic mode, and the correlation coefficient in the linearity study was found to be 0.9996, LOD, and LOQ are 0.52 and 1.56 mg/mL. All developed methods demonstrated good repeatability and recovery with %RSD < 2. The proposed established methods were assessed using one-way ANOVA. It was revealed that the Fcalculated value was lower than the Ftabulated value, with no discernible variation in the assay results. Studies on stress degradation show that oxidation and acid degradation mostly impact favipiravir solutions. The Analytical Eco-scale verified that these methods are the greenest and most environmentally friendly, enabling the suggested approach to use an effective green analytical methodology to measure favipiravir extensively. Phosphate buffer (pH 6.4) was the best dissolution medium after analysis of the favipiravir dissolution study in several dissolution media.

16.
PeerJ ; 11: e14832, 2023.
Article in English | MEDLINE | ID: covidwho-2307150

ABSTRACT

Quinoa (Chenopodium quinoa) is a grain-like, genetically diverse, highly complex, nutritious, and stress-tolerant food that has been used in Andean Indigenous cultures for thousands of years. Over the past several decades, numerous nutraceutical and food companies are using quinoa because of its perceived health benefits. Seeds of quinoa have a superb balance of proteins, lipids, carbohydrates, saponins, vitamins, phenolics, minerals, phytoecdysteroids, glycine betaine, and betalains. Quinoa due to its high nutritional protein contents, minerals, secondary metabolites and lack of gluten, is used as the main food source worldwide. In upcoming years, the frequency of extreme events and climatic variations is projected to increase which will have an impact on reliable and safe production of food. Quinoa due to its high nutritional quality and adaptability has been suggested as a good candidate to offer increased food security in a world with increased climatic variations. Quinoa possesses an exceptional ability to grow and adapt in varied and contrasting environments, including drought, saline soil, cold, heat UV-B radiation, and heavy metals. Adaptations in salinity and drought are the most commonly studied stresses in quinoa and their genetic diversity associated with two stresses has been extensively elucidated. Because of the traditional wide-ranging cultivation area of quinoa, different quinoa cultivars are available that are specifically adapted for specific stress and with broad genetic variability. This review will give a brief overview of the various physiological, morphological and metabolic adaptations in response to several abiotic stresses.


Subject(s)
Chenopodium quinoa , Adaptation, Psychological , Vitamins , Acclimatization , Betaine
17.
Water (Switzerland) ; 15(7), 2023.
Article in English | Scopus | ID: covidwho-2306223

ABSTRACT

UV-LED irradiation has attracted attention in water and wastewater disinfection applications. However, no studies have quantitatively investigated the impact of light intensity on the UV dosage for the same magnitude of disinfection. This study presents a powerful 280 nm UV-LED photoreactor with adjustable light intensity to disinfect municipal wastewater contaminated with E. coli, SARS-CoV-2 genetic materials and others. The disinfection performance of the 280 nm LED was also compared with 405 nm visible light LEDs, in terms of inactivating E. coli and total coliforms, as well as reducing cATP activities. The results showed that the UV dose needed per log reduction of E. coli and total coliforms, as well as cATP, could be decreased by increasing the light intensity within the investigated range (0–9640 µW/cm2). Higher energy consumption is needed for microbial disinfection using the 405 nm LED when compared to 280 nm LED. The signal of SARS-CoV-2 genetic material in wastewater and the SARS-CoV-2 spike protein in pure water decreased upon 280 nm UV irradiation. © 2023 by the authors.

18.
Building and Environment ; 236, 2023.
Article in English | Scopus | ID: covidwho-2305491

ABSTRACT

222-nm Far-UVC light is an emerging and promising tool for rapidly inactivating airborne pathogens. In this study, we experimentally evaluated the performance of a 222-nm Far-UVC upper-room disinfection system with a 15 W Far-UVC lamp in a full-scale chamber (11.9 m3). One gram-positive bacteria, namely Staphylococcus epidermidis and two gram-negative bacteria, namely Escherichia coli and Salmonella enterica were selected for the experiments. The aerosolized bacteria were injected into the chamber and exposed to 222-nm Far-UVC light. The first-order decay rates of indoor bioaerosols concentration with and without Far-UVC treatment were estimated. According to the results, the 222-nm Far-UVC induced decay rates of three bacteria were 0.0611 ± 0.003, 0.409 ± 0.048, and 0.474 ± 0.015 min−1, respectively. Besides, the UV susceptibility constants (Z-values) of these three bacteria were estimated as 0.157, 0.974, and 1.18 m2/J, respectively. The gram-positive bacteria, S. epidermidis, showed higher resistance to Far-UVC light as compared to the gram-negative bacteria, E. coli and S. enterica. In addition, a case study on airborne SARS-CoV-2 indoor transmission was simulated, and the infection risk of SARS-CoV-2 was compared using the Far-UVC and enhanced ventilation approaches. The results showed that both UV inactivation and ventilation approaches can significantly reduce the infection risk. More importantly, the Far-UVC may be a feasible and sustainable solution for reducing infection risk and improving indoor air quality. © 2023 Elsevier Ltd

19.
95th Water Environment Federation Technical Exhibition and Conference, WEFTEC 2022 ; : 1864-1870, 2022.
Article in English | Scopus | ID: covidwho-2298070

ABSTRACT

While virus effluent limits are yet to be promulgated through wastewater discharge permits, consideration for regulations and their resulting impact on current and future wastewater disinfection systems have long preceded the SARS-CoV-2 pandemic. Further, the pandemic has prompted significant pubic interested in the presence and threat of pathogens in waterways. The wastewater industry has proven its adaptability through the implementation of influent monitoring to predict coronavirus outbreaks and the SARS-CoV-2 pandemic has ushered in a new perspective on both virus monitoring and potential regulation. As a result, disinfection projects occurring during the pandemic have been privy to the influence of virus-based control considerations, irrespective of official discharge regulations impacting the UV design dose for secondary effluent applications. Copyright © 2022 Water Environment Federation.

20.
Polymers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2291212

ABSTRACT

During the initial stages of the COVID-19 pandemic, healthcare facilities experienced severe shortages of personal protective equipment (PPE) and other medical supplies. Employing 3D printing to rapidly fabricate functional parts and equipment was one of the emergency solutions used to tackle these shortages. Using ultraviolet light in the UV-C band (wavelengths of 200 nm to 280 nm) might prove useful in sterilizing 3D printed parts, enabling their reusability. Most polymers, however, degrade under UV-C radiation, so it becomes necessary to determine what 3D printing materials can withstand the conditions found during medical equipment sterilization with UV-C. This paper analyzes the effect of accelerated aging through prolonged exposure to UV-C on the mechanical properties of parts 3D printed from a polycarbonate and acrylonitrile butadiene styrene polymer (ABS-PC). Samples 3D printed using a material extrusion process (MEX) went through a 24-h UV-C exposure aging cycle and then were tested versus a control group for changes in tensile strength, compressive strength and some selected material creep characteristics. Testing showed minimal mechanical property degradation following the irradiation procedure, with tensile strength being statistically the same for irradiated parts as those in the control group. Irradiated parts showed small losses in stiffness (5.2%) and compressive strength (6.5%). Scanning electron microscopy (SEM) was employed in order to assess if any changes occurred in the material structure.

SELECTION OF CITATIONS
SEARCH DETAIL